
Interferometry Fringe Tracing using Image Segmentation

Jake Lawson

Image segmentation using a modified UNet was applied to interferometry fringe tracing. The machine

learning algorithm was capable of tracing complicated interferometry fringe patterns under certain

conditions. The model was trained on interferometry data from the Laboratory of Plasma Studies at

Cornell.

I. Introduction

The Laboratory of Plasma Studies (LPS), at Cornell

University, uses interferometry to collect experimental

data. The interferometry images must be fringe traced to

extract the experimental data from the images. Fringe

tracing is done by tracing the minimums of the

interferometry pattern. Currently, fringe tracing is done

by a combination of a non-machine learning algorithm

and tracing by hand. This algorithm performs well for

simple fringe traces but is unable to handle complicated

fringe patterns.

Machine learning (ML) has recently been applied to

numerous image related tasks previously thought to be

difficult to do algorithmically [1]. One example is image

segmentation, which is like fringe tracing. Given the

success of image segmentation in other image related

tasks, it could be applied to interferometry fringe tracing.

A more accurate fringe tracing algorithm that can handle

complicated interferometry patterns would reduce data

analysis times greatly, due to decreasing the amount of

tracing that must be done by hand.

II. Theory

A machine learning algorithm is an algorithm that

learns how to perform a task better as data is given to it.

The data used to train the algorithm is the training

dataset, and the data used to test the algorithm is the

testing dataset. The goal of a training dataset is to

approximate the span of possible data for that

experiment or task.

Image segmentation is a field of machine learning,

and specifically image processing using ML. An image

segmentation algorithm labels different pixels of an

image based on what the algorithm “thinks” is present at

that pixel. Image segmentation has been used to detect

many different objects in images, including people, cars,

dogs, and many other different objects. The output of an

image segmentation algorithm is a segmentation map.

Each of these segmentation maps have a probability at

every pixel. This probability is the probability that that

pixel contains the object being detected.

III. Network Architecture

The foundation for the ML architecture used is

UNet. UNet is a fully convolutional neural network

(CNN) originally designed for biomedical image

segmentation [12]. A fully convolutional neural network

is a CNN that does not have any dense layers, or a layer

in which every neuron in that layer is connected to every

neuron in the previous layer. CNNs use a convolution

operator to connect layers rather than dense layers.

CNNs are used for image processing in ML for

multiple reasons. One is the locality enforced by the

convolution operator. The locality comes from the kernel

size of the convolution operator.

UNet’s architecture is made from a contracting path

and an expanding path. The goal of the expanding path is

to reduce the original image to a feature representation.

This is done by sequentially increasing the number of

feature channels (initially 3 for RGB images, 1 for

greyscale), while downsampling the image. The goal of

the contracting path is to create the segmentation map

from the feature representation. The contracting path

utilizes convolution blocks (groups of sequential

convolutions), as well as transposed (or inverse)

convolution operators, which upsample the feature

representation while decreasing the number of feature

channels. Outputs from the contracting path are also

given to the expanding path at each stage to remind the

network of the original image, which is facilitated via

long skip connections.

Figure 2. UNet network architecture.

Each path consists of multiple convolution

blocks, which sequentially apply convolutions to the

input. In the contracting path, a convolution block is

applied to the image, followed by a downsampling

operation. In the original UNet design, this is a 2x2 max

pooling operation, which splits the image into 2x2

sections and only takes the largest value. This

downsampling was improved to a 2x2 convolution on

the same 2x2 sections described above, which allows for

learnable downsampling.

Model Improvements Ideas

Short Skip Connections

Generally, skip connections bring data from one

point in the model to a later point. The original UNet

implementation already contains long skip connections,

connecting the expanding path to the contracting path.

Short skip connections were added to the model to

connect the beginning and the end of each convolution

block. Short skip connections have been shown to

increase the trainability of the interior of the model. This

allows for more of the model to be effectively used in

segmentation.

Figure 3. UNet network architecture with short skip

connections added.

Batch Normalization

Batch normalization normalizes the data in each

feature map. This has been shown to have many

beneficial properties for image classification [2]

including reducing training time and increasing model

generalizability. Currently a form of normalization is

present in most all modern image segmentation

networks.

Recurrent Operations

Recurrent operation are operations that loop the

data through the operator multiple times rather than just

a single time. When added to CNNs for image

segmentation, they have been shown to improve feature

representation for the segmentation task and allow for

better performance without increasing the number of

model parameters [4], [5].

Attention Gates

Attention gates learn to focus on important

structures and regions in the input image and suppress

irrelevant regions. The addition of attention gates to a

CNN has been shown to increase model sensitivity and

prediction accuracy without sacrificing computational

efficiency [6].

IV. Dataset

The dataset used is a collection of 105

interferometry images and their corresponding fringe

traces produced by the Laboratory of Plasma Studies at

Cornell University (LPS). The fringe traces for these

images were made by a combination of the previous

fringe tracing algorithm and human cleaning and tracing.

This dataset contains a mixture of simple and

complicated fringe patterns. A simple fringe pattern has

a very strong vertical bias in the fringe patterns, with

little to no bends or turns in the fringe patterns. They

also are similarly spaced out throughout the entire

image. More complicated fringe patterns still have a

vertical bias but contain many bends and pockets in

certain regions of the fringe pattern.

Figure 4. Interferometry image containing a complicated

pattern on the left side of the image, and a simpler

pattern on the right.

Figure 5. Fringe trace of the interferometry image in

figure 3.

Data Preparation

The full interferometry images are too large to

be effectively trained on, therefore, they are cut up into

smaller images to allow for training. Given a full

interferometry image and its fringe trace pair, the

unnecessary pixels where no fringe trace is present

(typically the top and bottom of each image) are

removed. Then the images are cut up into a usable size.

The final size of the cut images can be freely chosen, but

the image sizes used were 600x400 pixels and 250x200

pixels. An overlap must be added to the images because

each time a convolution is applied to them, data on the

edge of the image is lost. This overlap was set at 100

pixels on each side for all the cutting, resulting in a final

image size of 800x600 and 450x400. The same

algorithm is used while cutting the fringe trace images

which ensures that the images are cut the exact same

way.

After all the images are cut, they can be used to

train the model. The initial dataset contained 105 very

large interferometry images and their pairs. After cutting

the dataset contained around 2200 800x600 images or

12000 450x400 images.

Data Augmentations

Data augmentations have been shown to combat

overfitting in image classification and image

segmentation tasks [9]. The goal of data augmentations

is to better generalize and expand your training dataset

by creating new images previously unseen to the model

via augmentations. Two main augmentations were

applied, image flips, and elastic deformation. These

augmentations were applied to training images with a

given probability (usually around .05-.2).

For image flips, both horizontal flips and

vertical flips were used. These created small changes in

the training dataset without fundamentally changing the

input image due to the vertical bias of the fringes. The

rotations also impart a level of symmetry on the model

which should produce less overfitting and better

generalizability.

Elastic deformation locally stretches,

compresses, and shifts the image in a continuous

manner. The outputs can turn simple fringe images into

much more complicated fringe images by emulating the

bends and pockets of complicated fringe images. Adding

elastic deformed images to the training dataset should

allow the model to better be able to trace complicated

fringe patterns.

Figures 6, 7. Non augmented interferometry image (5)

along with the same image after being elastically

deformed (6).

V. Training

Model training was done using google colaboratory.

This was done because modern machine learning models

are greatly sped by using GPUs. The python library

PyTorch [11], which is a python library created for deep

learning, was used to create the python code for training.

The adam optimizer was used as the back propagation

optimizer for all models [10].

Loss Functions

ML algorithms are trained by using a loss

function, which estimates the error or loss of the model’s

output when compared to the true output (given fringe

trace). This loss is then backpropagated through the

model, and the model’s parameters are changed slightly

to decrease loss.

The loss function I used was a sum of dice loss

and binary cross-entropy loss. Both loss functions have

been shown to work well for general image

segmentation tasks [7]. Binary cross-entropy loss is

defined as follows, where y is the true value (0 or 1) and

�̂� is the model predicted value,

𝐿𝐵𝐶𝐸(𝑦, �̂�) = −
1

𝑁
∑(𝑦𝑖𝑙𝑜𝑔(�̂�𝑖)

𝑁

𝑖=1

+ (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − �̂�𝑖)).

Binary cross-entropy loss measures the

difference between two probability distributions, and

therefore, serves as a good loss function for both image

classification and image segmentation. Dice loss is

defined as follows,

𝐿𝐷𝑖𝑐𝑒(𝑦, �̂�) = 1 −
∑ 2𝑦𝑖�̂�𝑖
𝑁
𝑖=1

∑ 𝑦𝑖 + �̂�𝑖
𝑁
𝑖=1

.

Dice loss basically computes a normalized dot

product between the two images and comes from the

dice coefficient used in computer vision to calculate the

similarity between two images.

A separate loss function approach using a part of

a generative adversarial network (GAN) [8] was also

tried. GANs are used for generating fake photorealistic

images and contain two parts, a generator and

discriminator. The goal of the generator is to create fake

data from a, typically random, input. The goal of the

discriminator is to discriminate between real and fake

data. These are trained in an adversarial way, the

generator is trying to fool the discriminator, and the

discriminator is trying not to get fooled.

For this application, the modified UNet model was

used as the generator, and a CNN discriminator was used

as a learnable loss function.

VI. Results

Many different variations of the modified UNet

model were tested on the above-mentioned dataset.

Unfortunately, none of these models were very accurate

and consistent in fringe tracing. Overfitting was the

primary reason for model testing inaccuracy. Despite the

attempts made to combat overfitting, any model that

could learn the segmentation task in a short enough

period of training time also would overfit the data.

Below are the model hyperparameter changes made to

reduce training time and combat overfitting.

Fig 7

Fig 6

Initial Kernel Size

For most CNN’s, the kernel size of the internal

convolution operations is set to three. This is not always

the case, however, for the initial convolution kernel size.

Therefore, some testing was done to optimize this

hyperparameter.

Figure 8. Training loss plots for each of the shown

kernel sizes. From this plot, an initial kernel size of 3 or

5 is optimal.

Given the results in figure 8, the initial kernel

size was set to 3 for the rest of the models.

Batch Normalization and Short Skip Connections

As mentioned earlier, batch normalization has

been shown to have many beneficial properties for

image classification and is present in modern image

segmentation models. Short skip connections allow for

more of the model to be used by spreading out parameter

updates throughout the model during training.

Figure 9. Training loss plots of initial model (no batch

normalization or short skip connections) and model with

batch normalization and short skip connections.

The initial model would have taken far too long

to train to an acceptable performance level assuming

training did not speed up or slow down for epochs after

200. Training most likely would have slowed down as

training continued, so the initial model was not capable

of performing the task adequately. The addition of batch

normalization and short skip connections were very

beneficial to the model’s performance in training. The

drop in loss of the current model at around epoch 75 is

most likely associated with overfitting.

Recurrent Operations

As mentioned earlier, recurrent operations loop

the data through the operation multiple times rather than

just once. They have been shown to create better feature

representation and therefore better performance without

increasing model parameter size.

Figure 10. Training loss of model with and without

recurrent operations present.

Figure 11. Testing loss of model with and without

recurrent operations present.

Given the above loss plots, recurrent/residual

operations did not seem to be beneficial to the model

performance. While they did help to combat overfitting,

they did that by worsening training performance, not

improving testing performance. Because of this, they

were not used in later models. One main problem in

testing residual/recurrent operations was the

combinatorial possibilities of where to position them in

the model. There is not a standard way of inserting them

into a model. Given a different positioning than what I

tested, they could be beneficial, but this seems rather

unlikely given the negative impacts they had on training.

Attention Gates

Attention gates have been shown to learn to

focus on important structures and suppress irrelevant

structures in image segmentation. Due to some training

and testing data being overwritten, I do not have plots

for the performance of attention gates. Regardless, they

did not work. Training loss went up to around 2 (normal

loss after first epoch is around 1.1) and did not decrease

much during training. Similar to residual/recurrent

operations, there are multiple different ways to add

attention gates to CNNs, and more specifically UNet.

Therefore, it is possible that other ways of adding

attention gates into UNet would produce better results,

but this is unlikely. The way of adding them used

seemed to be the standard and most common way.

Data Augmentations

Two types of data augmentations were used to

counter overfitting of the model, image flips and elastic

deformation. The severity of the elastic deformation

used is controlled by two parameters, one that controls

how much pixels move, and the other controls how

continuous this transformation is. The severity parameter

was set with a normal distribution, and the continuity

parameter was set to a constant relatively high value.

Fig 12

Figures 12, 13. The top plot is the training loss plot for a

model trained with and without data augmentations (11).

The bottom plot is training and testing loss for model

trained using data augmentations (12).

From the figures above, data augmentations

were able to slow overfitting. This, however, was not

enough to eliminate overfitting. Other data

augmentations could also be applied, like image

brightness and contrast augmentations due to the

variability of brightness and contrast in the actual

dataset.

GAN Loss Function

Generative adversarial networks can create fake

photorealistic images. This is in part due to the

discriminator used in a GAN. The discriminator

discriminates between real and fake created images. Due

to this capability, a discriminator was used as a learnable

loss function. To properly train the discriminator to be

used as a loss function, the model was trained using dice

and binary cross entropy loss for 100 epochs. During

these 100 epochs, the discriminator was also trained with

the model output being labeled fake, and the true fringe

trace being labeled real. After 100 epochs, the models

training was governed by the discriminator output rather

than dice and binary cross entropy loss.

Figure 14. Training loss plot using a discriminator as a

learnable loss function. Dice and binary cross-entropy

loss were used for training until epoch 100. Then the

trained discriminator was used.

Given the results in figure 14, the learnable loss

function did not work. The loss immediately rose to well

above the starting loss of the model, and the

segmentation outputs were completely blank.

Discriminators are notoriously hard to use due to the

adversarial way they are trained, which complicates

training a model for this task too much.

Image Sizes

Two image sizes were used to train models, as

described above. The two sizes are 800x600 and

450x400. Of the two sizes, 800x600 seemed to have

better results. This is due in part to each image

containing more data, and therefore making it harder for

the model to overfit. The larger images also allowed for

a smaller batch size while training, which tends to

generalize better.

Best Model Results

The best model was applied to new images not

previously seen by the model in either the training or

testing set. This model performed adequately on both

complicated and simple fringe traces when the images

were bright. For dull images, the model performed

poorly, but this can be rectified by adjusting the

brightness of the dull images.

Fig 13

Figures 15, 16, 17, 18. 15 is the original interferometry

image. 16 is the same as 15 but with the image

brightened. 17 is the model output of the original image.

18 is the model output of the brightened image.

 Fig 20

Fig 20

Fig 22

Fig 20

Fig 19

Fig 18

Fig 16

Fig 15

Fig 17

Figures 19, 20, 21, and 22. Interferometry images and

model outputs for previously unseen complicated

interferometry images.

Figure 23, 24. Interferometry image and model output

for previously unseen simple interferometry image.

The results indicate that a ML based interferometry

fringe tracing algorithm could be used to help reduce

human tracing times for complicated fringe traces in

some images, but the outputs would still need to be

corrected and finished by human tracing. The results of

the model vary greatly depending on brightness, which

can be partially corrected by brightening the image.

VII. Conclusion and Future Work

At LPS, a fast and accurate method for

interferometry fringe tracing would be very valuable

because it would reduce interferometry data analysis

time, and greatly reduce the amount of human tracing

required. ML image segmentation algorithms have

shown promising results in similar image related tasks as

interferometry fringe tracing; therefore, a ML based

interferometry fringe tracing algorithm was developed.

This algorithm performed adequately on given

complicated interferometry fringe images, and well on

simple interferometry fringe images. Ultimately, whether

to use this algorithm to assist in interferometry image

analysis is up to the person performing the analysis, but

this algorithm could serve as a good tool for speeding up

said analysis.

This algorithm would most likely benefit from a

further increase in the dataset size. The current dataset

size is 105 image pairs. There are very few limitations

for training on a larger dataset other than the increased

training time, scaling up the dataset could serve as a very

easy way of boosting results. The brightening of images

before training could also be a simple way to improve

results. Since this model did not perform well on dull

images after training, it does not make sense to keep

them in the dataset as is. Brightening these images could

Fig 23

Fig 22

Fig 24 Fig 21

also serve to increase the size of the dataset because the

model would be presented with more orientations of

fringe patterns in a way that better enables the model to

learn from it.

VIII. References

[1] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N.

Kehtarnavaz and D. Terzopoulos, "Image Segmentation

Using Deep Learning: A Survey," in IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 44,

no. 7, pp. 3523-3542, 1 July 2022, doi:

10.1109/TPAMI.2021.3059968

[2] Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift

arXiv:1502.03167v3 [cs.LG]

[3] The Importance of Skip Connections in Biomedical

Image Segmentation arXiv:1608.04117v2 [cs.CV]

[4] Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari

VK. Recurrent residual U-Net for medical image

segmentation. J Med Imaging (Bellingham). 2019

Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub

2019 Mar 27. PMID: 30944843; PMCID: PMC6435980.

[5] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual

Learning for Image Recognition," 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi:

10.1109/CVPR.2016.90.

[6] Attention U-Net: Learning Where to Look for the

Pancreas arXiv:1804.03999v3 [cs.CV]

[7] A survey of loss functions for semantic segmentation

arXiv:2006.14822v4 [eess.IV]

[8] Generative Adversarial Networks arXiv:1406.2661v1

[stat.ML]

[9] Image Data Augmentation for Deep Learning: A

Survey arXiv:2204.08610v1 [cs.CV]

[10] Adam: A Method for Stochastic Optimization

arXiv:1412.6980v9 [cs.LG]

[11] Paszke, A., Gross, S., Massa, F., Lerer, A.,

Bradbury, J., Chanan, G., … Chintala, S. (2019).

PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Advances in Neural Information

Processing Systems 32 (pp. 8024–8035). Curran

Associates, Inc. Retrieved from

http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-

library.pdf

[12] U-Net: Convolutional Networks for Biomedical

Image Segmentation arXiv:1505.04597v1 [cs.CV]

[13] Zuo, C., Qian, J., Feng, S. et al. Deep learning in

optical metrology: a review. Light Sci Appl 11, 39

(2022). https://doi.org/10.1038/s41377-022-00714-x

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41377-022-00714-x

