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Image segmentation using a modified UNet was applied to interferometry fringe tracing. The machine 

learning algorithm was capable of tracing complicated interferometry fringe patterns under certain 

conditions. The model was trained on interferometry data from the Laboratory of Plasma Studies at 

Cornell. 

 

I. Introduction 

The Laboratory of Plasma Studies (LPS), at Cornell 

University, uses interferometry to collect experimental 

data. The interferometry images must be fringe traced to 

extract the experimental data from the images. Fringe 

tracing is done by tracing the minimums of the 

interferometry pattern. Currently, fringe tracing is done 

by a combination of a non-machine learning algorithm 

and tracing by hand. This algorithm performs well for 

simple fringe traces but is unable to handle complicated 

fringe patterns. 

Machine learning (ML) has recently been applied to 

numerous image related tasks previously thought to be 

difficult to do algorithmically [1]. One example is image 

segmentation, which is like fringe tracing. Given the 

success of image segmentation in other image related 

tasks, it could be applied to interferometry fringe tracing. 

A more accurate fringe tracing algorithm that can handle 

complicated interferometry patterns would reduce data 

analysis times greatly, due to decreasing the amount of 

tracing that must be done by hand. 

II. Theory 

A machine learning algorithm is an algorithm that 

learns how to perform a task better as data is given to it. 

The data used to train the algorithm is the training 

dataset, and the data used to test the algorithm is the 

testing dataset. The goal of a training dataset is to 

approximate the span of possible data for that 

experiment or task. 

Image segmentation is a field of machine learning, 

and specifically image processing using ML. An image 

segmentation algorithm labels different pixels of an 

image based on what the algorithm “thinks” is present at 

that pixel. Image segmentation has been used to detect 

many different objects in images, including people, cars, 

dogs, and many other different objects. The output of an 

image segmentation algorithm is a segmentation map. 

Each of these segmentation maps have a probability at 

every pixel. This probability is the probability that that 

pixel contains the object being detected. 

III. Network Architecture 

The foundation for the ML architecture used is 

UNet. UNet is a fully convolutional neural network 

(CNN) originally designed for biomedical image 

segmentation [12]. A fully convolutional neural network 

is a CNN that does not have any dense layers, or a layer 

in which every neuron in that layer is connected to every 

neuron in the previous layer. CNNs use a convolution 

operator to connect layers rather than dense layers. 

CNNs are used for image processing in ML for 

multiple reasons. One is the locality enforced by the 

convolution operator. The locality comes from the kernel 

size of the convolution operator. 

UNet’s architecture is made from a contracting path 

and an expanding path. The goal of the expanding path is 

to reduce the original image to a feature representation. 

This is done by sequentially increasing the number of 

feature channels (initially 3 for RGB images, 1 for 

greyscale), while downsampling the image. The goal of 

the contracting path is to create the segmentation map 

from the feature representation. The contracting path 

utilizes convolution blocks (groups of sequential 

convolutions), as well as transposed (or inverse) 

convolution operators, which upsample the feature 

representation while decreasing the number of feature 

channels. Outputs from the contracting path are also 

given to the expanding path at each stage to remind the 

network of the original image, which is facilitated via 

long skip connections. 



 

Figure 2. UNet network architecture. 

Each path consists of multiple convolution 

blocks, which sequentially apply convolutions to the 

input. In the contracting path, a convolution block is 

applied to the image, followed by a downsampling 

operation. In the original UNet design, this is a 2x2 max 

pooling operation, which splits the image into 2x2 

sections and only takes the largest value. This 

downsampling was improved to a 2x2 convolution on 

the same 2x2 sections described above, which allows for 

learnable downsampling. 

Model Improvements Ideas 

Short Skip Connections 

Generally, skip connections bring data from one 

point in the model to a later point. The original UNet 

implementation already contains long skip connections, 

connecting the expanding path to the contracting path. 

Short skip connections were added to the model to 

connect the beginning and the end of each convolution 

block. Short skip connections have been shown to 

increase the trainability of the interior of the model. This 

allows for more of the model to be effectively used in 

segmentation. 

 

 

Figure 3. UNet network architecture with short skip 

connections added. 

Batch Normalization 

Batch normalization normalizes the data in each 

feature map. This has been shown to have many 

beneficial properties for image classification [2] 

including reducing training time and increasing model 

generalizability. Currently a form of normalization is 

present in most all modern image segmentation 

networks.  

Recurrent Operations 

Recurrent operation are operations that loop the 

data through the operator multiple times rather than just 

a single time. When added to CNNs for image 

segmentation, they have been shown to improve feature 

representation for the segmentation task and allow for 

better performance without increasing the number of 

model parameters [4], [5]. 

Attention Gates 

Attention gates learn to focus on important 

structures and regions in the input image and suppress 

irrelevant regions. The addition of attention gates to a 

CNN has been shown to increase model sensitivity and 

prediction accuracy without sacrificing computational 

efficiency [6]. 

IV. Dataset 

The dataset used is a collection of 105 

interferometry images and their corresponding fringe 

traces produced by the Laboratory of Plasma Studies at 

Cornell University (LPS). The fringe traces for these 

images were made by a combination of the previous 

fringe tracing algorithm and human cleaning and tracing. 

This dataset contains a mixture of simple and 

complicated fringe patterns. A simple fringe pattern has 

a very strong vertical bias in the fringe patterns, with 



little to no bends or turns in the fringe patterns. They 

also are similarly spaced out throughout the entire 

image. More complicated fringe patterns still have a 

vertical bias but contain many bends and pockets in 

certain regions of the fringe pattern. 

 

Figure 4. Interferometry image containing a complicated 

pattern on the left side of the image, and a simpler 

pattern on the right. 

 

Figure 5. Fringe trace of the interferometry image in 

figure 3. 

Data Preparation 

The full interferometry images are too large to 

be effectively trained on, therefore, they are cut up into 

smaller images to allow for training. Given a full 

interferometry image and its fringe trace pair, the 

unnecessary pixels where no fringe trace is present 

(typically the top and bottom of each image) are 

removed. Then the images are cut up into a usable size. 

The final size of the cut images can be freely chosen, but 

the image sizes used were 600x400 pixels and 250x200 

pixels. An overlap must be added to the images because 

each time a convolution is applied to them, data on the 

edge of the image is lost. This overlap was set at 100 

pixels on each side for all the cutting, resulting in a final 

image size of 800x600 and 450x400. The same 

algorithm is used while cutting the fringe trace images 

which ensures that the images are cut the exact same 

way. 

After all the images are cut, they can be used to 

train the model. The initial dataset contained 105 very 

large interferometry images and their pairs. After cutting 

the dataset contained around 2200 800x600 images or 

12000 450x400 images. 

Data Augmentations 

Data augmentations have been shown to combat 

overfitting in image classification and image 

segmentation tasks [9]. The goal of data augmentations 

is to better generalize and expand your training dataset 

by creating new images previously unseen to the model 

via augmentations. Two main augmentations were 

applied, image flips, and elastic deformation. These 

augmentations were applied to training images with a 

given probability (usually around .05-.2). 

For image flips, both horizontal flips and 

vertical flips were used. These created small changes in 

the training dataset without fundamentally changing the 

input image due to the vertical bias of the fringes. The 

rotations also impart a level of symmetry on the model 

which should produce less overfitting and better 

generalizability. 

Elastic deformation locally stretches, 

compresses, and shifts the image in a continuous 

manner. The outputs can turn simple fringe images into 

much more complicated fringe images by emulating the 

bends and pockets of complicated fringe images. Adding 

elastic deformed images to the training dataset should 

allow the model to better be able to trace complicated 

fringe patterns. 



 

 

Figures 6, 7. Non augmented interferometry image (5) 

along with the same image after being elastically 

deformed (6). 

V. Training 

Model training was done using google colaboratory. 

This was done because modern machine learning models 

are greatly sped by using GPUs. The python library 

PyTorch [11], which is a python library created for deep 

learning, was used to create the python code for training. 

The adam optimizer was used as the back propagation 

optimizer for all models [10]. 

Loss Functions 

ML algorithms are trained by using a loss 

function, which estimates the error or loss of the model’s 

output when compared to the true output (given fringe 

trace). This loss is then backpropagated through the 

model, and the model’s parameters are changed slightly 

to decrease loss. 

The loss function I used was a sum of dice loss 

and binary cross-entropy loss. Both loss functions have 

been shown to work well for general image 

segmentation tasks [7]. Binary cross-entropy loss is 

defined as follows, where y is the true value (0 or 1) and 

�̂� is the model predicted value, 

𝐿𝐵𝐶𝐸(𝑦, �̂�) = −
1

𝑁
∑(𝑦𝑖𝑙𝑜𝑔(�̂�𝑖)

𝑁

𝑖=1

+ (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − �̂�𝑖)). 

Binary cross-entropy loss measures the 

difference between two probability distributions, and 

therefore, serves as a good loss function for both image 

classification and image segmentation. Dice loss is 

defined as follows, 

𝐿𝐷𝑖𝑐𝑒(𝑦, �̂�) = 1 −
∑ 2𝑦𝑖�̂�𝑖
𝑁
𝑖=1

∑ 𝑦𝑖 + �̂�𝑖
𝑁
𝑖=1

. 

Dice loss basically computes a normalized dot 

product between the two images and comes from the 

dice coefficient used in computer vision to calculate the 

similarity between two images. 

A separate loss function approach using a part of 

a generative adversarial network (GAN) [8] was also 

tried. GANs are used for generating fake photorealistic 

images and contain two parts, a generator and 

discriminator. The goal of the generator is to create fake 

data from a, typically random, input. The goal of the 

discriminator is to discriminate between real and fake 

data. These are trained in an adversarial way, the 

generator is trying to fool the discriminator, and the 

discriminator is trying not to get fooled. 

For this application, the modified UNet model was 

used as the generator, and a CNN discriminator was used 

as a learnable loss function. 

VI. Results 

Many different variations of the modified UNet 

model were tested on the above-mentioned dataset. 

Unfortunately, none of these models were very accurate 

and consistent in fringe tracing. Overfitting was the 

primary reason for model testing inaccuracy. Despite the 

attempts made to combat overfitting, any model that 

could learn the segmentation task in a short enough 

period of training time also would overfit the data. 

Below are the model hyperparameter changes made to 

reduce training time and combat overfitting. 

Fig 7 

Fig 6 



Initial Kernel Size 

For most CNN’s, the kernel size of the internal 

convolution operations is set to three. This is not always 

the case, however, for the initial convolution kernel size. 

Therefore, some testing was done to optimize this 

hyperparameter. 

 

Figure 8. Training loss plots for each of the shown 

kernel sizes. From this plot, an initial kernel size of 3 or 

5 is optimal. 

Given the results in figure 8, the initial kernel 

size was set to 3 for the rest of the models. 

Batch Normalization and Short Skip Connections 

As mentioned earlier, batch normalization has 

been shown to have many beneficial properties for 

image classification and is present in modern image 

segmentation models. Short skip connections allow for 

more of the model to be used by spreading out parameter 

updates throughout the model during training. 

 

Figure 9. Training loss plots of initial model (no batch 

normalization or short skip connections) and model with 

batch normalization and short skip connections. 

The initial model would have taken far too long 

to train to an acceptable performance level assuming 

training did not speed up or slow down for epochs after 

200. Training most likely would have slowed down as 

training continued, so the initial model was not capable 

of performing the task adequately. The addition of batch 

normalization and short skip connections were very 

beneficial to the model’s performance in training. The 

drop in loss of the current model at around epoch 75 is 

most likely associated with overfitting. 

Recurrent Operations 

As mentioned earlier, recurrent operations loop 

the data through the operation multiple times rather than 

just once. They have been shown to create better feature 

representation and therefore better performance without 

increasing model parameter size. 

 

 



 

Figure 10. Training loss of model with and without 

recurrent operations present. 

 

Figure 11. Testing loss of model with and without 

recurrent operations present. 

Given the above loss plots, recurrent/residual 

operations did not seem to be beneficial to the model 

performance. While they did help to combat overfitting, 

they did that by worsening training performance, not 

improving testing performance. Because of this, they 

were not used in later models. One main problem in 

testing residual/recurrent operations was the 

combinatorial possibilities of where to position them in 

the model. There is not a standard way of inserting them 

into a model. Given a different positioning than what I 

tested, they could be beneficial, but this seems rather 

unlikely given the negative impacts they had on training. 

Attention Gates 

Attention gates have been shown to learn to 

focus on important structures and suppress irrelevant 

structures in image segmentation. Due to some training 

and testing data being overwritten, I do not have plots 

for the performance of attention gates. Regardless, they 

did not work. Training loss went up to around 2 (normal 

loss after first epoch is around 1.1) and did not decrease 

much during training. Similar to residual/recurrent 

operations, there are multiple different ways to add 

attention gates to CNNs, and more specifically UNet. 

Therefore, it is possible that other ways of adding 

attention gates into UNet would produce better results, 

but this is unlikely. The way of adding them used 

seemed to be the standard and most common way. 

Data Augmentations 

Two types of data augmentations were used to 

counter overfitting of the model, image flips and elastic 

deformation. The severity of the elastic deformation 

used is controlled by two parameters, one that controls 

how much pixels move, and the other controls how 

continuous this transformation is. The severity parameter 

was set with a normal distribution, and the continuity 

parameter was set to a constant relatively high value. 

 

 

Fig 12 



 

Figures 12, 13. The top plot is the training loss plot for a 

model trained with and without data augmentations (11). 

The bottom plot is training and testing loss for model 

trained using data augmentations (12). 

From the figures above, data augmentations 

were able to slow overfitting. This, however, was not 

enough to eliminate overfitting. Other data 

augmentations could also be applied, like image 

brightness and contrast augmentations due to the 

variability of brightness and contrast in the actual 

dataset. 

GAN Loss Function 

Generative adversarial networks can create fake 

photorealistic images. This is in part due to the 

discriminator used in a GAN. The discriminator 

discriminates between real and fake created images. Due 

to this capability, a discriminator was used as a learnable 

loss function. To properly train the discriminator to be 

used as a loss function, the model was trained using dice 

and binary cross entropy loss for 100 epochs. During 

these 100 epochs, the discriminator was also trained with 

the model output being labeled fake, and the true fringe 

trace being labeled real. After 100 epochs, the models 

training was governed by the discriminator output rather 

than dice and binary cross entropy loss. 

 

Figure 14. Training loss plot using a discriminator as a 

learnable loss function. Dice and binary cross-entropy 

loss were used for training until epoch 100. Then the 

trained discriminator was used. 

Given the results in figure 14, the learnable loss 

function did not work. The loss immediately rose to well 

above the starting loss of the model, and the 

segmentation outputs were completely blank. 

Discriminators are notoriously hard to use due to the 

adversarial way they are trained, which complicates 

training a model for this task too much. 

Image Sizes 

Two image sizes were used to train models, as 

described above. The two sizes are 800x600 and 

450x400. Of the two sizes, 800x600 seemed to have 

better results. This is due in part to each image 

containing more data, and therefore making it harder for 

the model to overfit. The larger images also allowed for 

a smaller batch size while training, which tends to 

generalize better. 

Best Model Results 

The best model was applied to new images not 

previously seen by the model in either the training or 

testing set. This model performed adequately on both 

complicated and simple fringe traces when the images 

were bright. For dull images, the model performed 

poorly, but this can be rectified by adjusting the 

brightness of the dull images. 

Fig 13 



 

 

 

 

Figures 15, 16, 17, 18. 15 is the original interferometry 

image. 16 is the same as 15 but with the image 

brightened. 17 is the model output of the original image. 

18 is the model output of the brightened image. 
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Figures 19, 20, 21, and 22. Interferometry images and 

model outputs for previously unseen complicated 

interferometry images. 

 

 

 

Figure 23, 24. Interferometry image and model output 

for previously unseen simple interferometry image. 

The results indicate that a ML based interferometry 

fringe tracing algorithm could be used to help reduce 

human tracing times for complicated fringe traces in 

some images, but the outputs would still need to be 

corrected and finished by human tracing. The results of 

the model vary greatly depending on brightness, which 

can be partially corrected by brightening the image. 

VII. Conclusion and Future Work 

At LPS, a fast and accurate method for 

interferometry fringe tracing would be very valuable 

because it would reduce interferometry data analysis 

time, and greatly reduce the amount of human tracing 

required. ML image segmentation algorithms have 

shown promising results in similar image related tasks as 

interferometry fringe tracing; therefore, a ML based 

interferometry fringe tracing algorithm was developed. 

This algorithm performed adequately on given 

complicated interferometry fringe images, and well on 

simple interferometry fringe images. Ultimately, whether 

to use this algorithm to assist in interferometry image 

analysis is up to the person performing the analysis, but 

this algorithm could serve as a good tool for speeding up 

said analysis. 

This algorithm would most likely benefit from a 

further increase in the dataset size. The current dataset 

size is 105 image pairs. There are very few limitations 

for training on a larger dataset other than the increased 

training time, scaling up the dataset could serve as a very 

easy way of boosting results. The brightening of images 

before training could also be a simple way to improve 

results. Since this model did not perform well on dull 

images after training, it does not make sense to keep 

them in the dataset as is. Brightening these images could 

Fig 23 

Fig 22 

Fig 24 Fig 21 



also serve to increase the size of the dataset because the 

model would be presented with more orientations of 

fringe patterns in a way that better enables the model to 

learn from it. 
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